

Photon Mapping Superluminal Particles

GUSTAF WALDEMARSON MICHAEL DOGGETT ARM, LUND UNIVERSITY

- Industrial PhD Student at the Lund University Graphics Group
- Employed by Arm Sweden

Lighting Phenomena From A to Z

The Aurora Borealis

Zodiacal Light

"The air is glowing!"

"The Cherenkov effect – it's a completely normal phenomenon, it can happen with minimal radiation."

"Look at that glow! That's radiation ionizing the air!"

– Quotes from "Chernobyl" Episode 1-2 © HBO

Inspiration Chernobyl

– Images from "Chernobyl" Episode 1-2 © HBO

Inspiration Nuclear Reactors

Reed Research Reactor

Advanced Test Reactor

The Phenomenon

The Cherenkov Effect

- v_p Particle velocity
- c_0 Speed of light
- *n* Index of refraction
- $c_m = \frac{c_0}{n}$ $\frac{c_0}{n}$ – Medium phase velocity

Cherenkov Emission Angle

 $cos(\theta) = \frac{c_0}{\pi}$ *vpn*

The Frank-Tamm Equation

$$
\frac{d^2E}{dx d\omega} = \frac{q^2}{4\pi} \mu(\omega)\omega \left(1 - \frac{c_0^2}{v_p^2 n^2(\omega)}\right)
$$

 ω – Angular frequency *q* – Electrical charge

 $n(\omega)$ – Index of refraction

d ²*N* $\frac{d^2N}{dx d\omega}$ – Energy per length x and ω

$$
\frac{d^2E}{dx d\omega} = \frac{q^2}{4\pi} \mu(\omega)\omega \left(1 - \frac{c_0^2}{v_p^2 n^2(\omega)}\right)
$$

$$
\Rightarrow
$$

$$
\frac{d^2N}{dx d\lambda} = -\frac{2\pi \alpha \mu(\lambda)}{\lambda^2} \left(1 - \frac{c_0^2}{v_p^2 n^2(\lambda)}\right)
$$

 λ – wavelength

 $N - #$ photons α – Free structure constant

Cherenkov Radiation Spectrum

Our Algorithm

- 1. Choose a point along the particle path (u_0)
- 2. Find the particle velocity and refractive index at the point
- 3. If *superluminal* at the point

Set the photon direction to somewhere in the Cherenkov direction (*u*1)

4. Otherwise

Set the photon direction to a random direction (u_1, u_2)

- 5. Use the Frank-Tamm spectrum for the particle as photon color
- 6. Trace the photon as usual in SPPM

- Probability Density Functions
	- Importance sampling
- Photon Density Distribution
	- Photon Origin (*o*)
	- Photon Direction (ω)

$$
p(o, \omega) = p(o) \cdot p(\omega)
$$

$$
p(o) = \frac{1}{\text{total particle length}}
$$

$$
p(\omega) = Pr(S)p_c(\omega) + (1 - Pr(S))p_s(\omega)
$$

$$
p(\omega) = Pr(S)p_c(\omega) + (1 - Pr(S))p_s(\omega)
$$

$$
p(\omega) = \frac{Pr(S)}{2\pi} + \frac{1 - Pr(S)}{4\pi} = \frac{1 + Pr(S)}{4\pi}
$$

$$
p(\omega) = Pr(S)p_c(\omega) + (1 - Pr(S))p_s(\omega)
$$

$$
p(\omega) = \frac{Pr(S)}{2\pi} + \frac{1 - Pr(S)}{4\pi} = \frac{1 + Pr(S)}{4\pi}
$$

 $Pr(S) = \frac{S}{S}$ superluminal path length total path length

PBRT Implementation

• Implemented in a PBRT (v3)

<https://github.com/Xaldew/pbrt-v3>

Matt Pharr, Wenzel Jakob, Greg Humphreys

PHYSICALLY BASED RENDERING

From Theory to Implementation

Third Edition

PBRT Implementation

PBRT Implementation

- PBRT *particle* arealight
	- The particle velocity
	- The number of particles
	- . . .

```
AttributeBegin
    AreaLightSource "particle"
                    "float velocity" 0.8
                    "integer nparticles" 1
    Translate 59.5 60 0
    Rotate -90 0 1 0
    Rotate 90 0 0 1
    Shape "disk" "float radius" 10
AttributeEnd
```


Cornell Box

- Simple Cornell Box
	- Particle light on the right
	- Optically dense object
	- No colors on the walls

Cornell Box - Cylinders Results

• Cornell Box with Cylinders

- Particle light in center
- Several optically dense objects with varying refractive indices

Reactor

- Nuclear Reactor Model
	- Based on this photograph from the Reed research reactor
	- Try to connect the geometrical representation of the Cherenkov radiation with the the real world appearance

Reactor

- Nuclear Reactor Model
	- Based on this photograph from the Reed research reactor
	- Try to connect the geometrical representation of the Cherenkov radiation with the the real world appearance

Reactor

Applications Limitations or Possibilities

- Easily faked with conventional light-sources
	- $-$... but we may want references images anyways
	- Simulate placement of Radioactivity detectors
	- Medical applications

Future Work

- Straight line vs. Random walk?
- Other phenomena?
- Volumetric rendering

Conclusions

- Extension to Photon Mapping: *Charged Particle Lights*
- Used to simulate the Cherenkov Effect
	- Implemented in PBRT (v3)
- Possible applications in nuclear physics or medicine

Thanks for Listening

Questions

- Thanks for listening!
-

Photon Mapping Superluminal Particles Gustaf Waldemarson Michael Doggett

This work was partially supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.

- Special thanks to...
	- Pierre Moreau @ LUGG
	- Simone Pellegrini @ Arm

The End