
Succinct Opacity Micromaps
Gustaf Waldemarson & Michael Doggett

Arm Sweden & Lund University

Succinct Opacity Micromaps
Gustaf Waldemarson & Michael Doggett

Arm Sweden & Lund University

20
24

-0
8-
16

Ah, I think we are just about ready to start!

Thanks everyone for coming! I hope you’ve all got plenty of food during the buffet, but hope-
fully not enough to go into a food-coma!

So, allow me to start this session and introduce, or I hope, re-introduce you to the concept of
opacity micromaps.



Agenda

1. What are Opacity Micromaps?
– uv2index (BarycentricsToSpaceFillingCurveIndex)

2. Succinct Opacity Micromaps
– Memory Footprint Comparison

3. Frametime Performance Evaluation

G.Waldemarson 1/30

Agenda

1. What are Opacity Micromaps?
– uv2index (BarycentricsToSpaceFillingCurveIndex)

2. Succinct Opacity Micromaps
– Memory Footprint Comparison

3. Frametime Performance Evaluation

20
24

-0
8-
16

Agenda

So, to start off: Let us have a quick look at what I will present: In short, I have three main topics
I will go through:

• A quick overview about micromaps and (opacity) micromaps in particular, including a new
micromap indexing algorithm.

• Then, we will proceed to discuss our main contribution in this paper: A new method for
compressing micromap data by converting it to a densely packed tree format, but more
on that in a bit.

• Then we will round things off with a frametime performance evaluation of the above
format as well as many other methods used to perform opacity testing, including the
official micromap formats that are now ostensibly accelerated in hardware on modern
Nvidia GPUs.



Opacity Micromaps

Opacity Micromaps

20
24

-0
8-
16 Opacity Micromaps



Opacity Micromaps
2-State 4-State

0b0 Fully Transparent
0b1 Fully Opaque

0b00 Fully Transparent

0b01 Fully Opaque

0b10 Unknown Transparent

0b11 Unknown Opaque

uv2index(u, v, level)
7

(0.28,0.4)

G.Waldemarson 2/30

Opacity Micromaps
2-State 4-State

0b0 Fully Transparent
0b1 Fully Opaque

0b00 Fully Transparent

0b01 Fully Opaque

0b10 Unknown Transparent

0b11 Unknown Opaque

uv2index(u, v, level)
7

(0.28,0.4)20
24

-0
8-
16 Opacity Micromaps

Opacity Micromaps

But without further ado, let us jump straight into it and talk about Micromaps.

What exactly is it? In short, it is simply an array of values mapped into fixed sub-areas of a
triangle as specified by a space-filling curve. In theory, we could assign any kind of data to
each of these sub-triangle faces, but for opacity micromaps we only care about 2 or 4 values.
Consequently, these values only occupy either 1 or 2 bits each, hence, the opacity micromap is
typically handled as a type of bit-vector and semantically, the values are mostly self-explanatory:

• Fully transparent and opaque means that that particular sub-triangle is either completely
opaque or transparent.

• Unknown values should look up the actual opacity values using some other method, by
e.g., calling the AnyHit-shader and looking it up in an alpha texture. Additionally, these
values can be converted to an equivalent 2-state value, e.g., when you want to use the
same micromap, but avoid calling the AnyHit-shader, such as for shadow-rays in the
ray-tracing pipeline.



Micromap Evolution

Gruen et al. Vulkan® & DirectX® [Werness 2022]

G.Waldemarson 3/30

Micromap Evolution

Gruen et al. Vulkan® & DirectX® [Werness 2022]

20
24

-0
8-
16 Opacity Micromaps

Micromap Evolution

Starting from the beginning though, micromapswere originally invented by Gruen et al. in order
to improve the performance when using AnyHit ray-tracing shaders. Simply put: by using a little
bit of extra memory as input to the ray-tracing pipeline we could improve the performance by
reducing the number of AnyHit call by about 30 % to 40 %.

This concept has more or less remained in the current form of opacity micromaps found in
Vulkan® and DirectX®: The main difference is simply how the subtriangles are ordered in the
final bit-stream, which you can see here: Gruen et al. ordered the triangles in strips from the
w-coordinate going up like this. Whereas the current format walk across the subtriangles in a
more even fashion, similar to how a Z-curve orders tiles.

One notable consequence of this is that Gruen et al.’s format is technically more granular as
each level only adds a single strip, but similar to data stored row or column order, it could lead
to somewhat unbalanced caching behaviors depending on the access pattern.



Opacity Micromaps Construction
uv2index BarycentricsToSpaceFillingCurveIndex

0
1

2

3











v0 =m01+m02−m12

v1 =m01+m12−m02

v2 =m02+m12−m01

G.Waldemarson 4/30

Opacity Micromaps Construction
uv2index BarycentricsToSpaceFillingCurveIndex

0
1

2

3











v0 =m01+m02−m12

v1 =m01+m12−m02

v2 =m02+m12−m01

20
24

-0
8-
16 Opacity Micromaps

Opacity Micromaps Construction

This naturally begs the question: How do you actually look-up a value in the micromap? Which,
as if by coincidence, leads us to our first novel contribution: A new simpler algorithm to explain
the barycentrics-to-index mapping.

1. Starting with a triangle, we divide each edge at the midpoint, thus forming 4 new
triangles, which I have taken to calling the Left, Middle, Right and Top subtriangle. These
are also indexed as seen earlier or up here.

(Next Slide)

2. Then, we can use a bit of geometry to derive these equations to link the midpoints to the
vertices.



Opacity Micromaps Construction
uv2index BarycentricsToSpaceFillingCurveIndex

0
1

2

3











v0 =m01+m02−m12

v1 =m01+m12−m02

v2 =m02+m12−m01

G.Waldemarson 4/30

Opacity Micromaps Construction
uv2index BarycentricsToSpaceFillingCurveIndex

0
1

2

3











v0 =m01+m02−m12

v1 =m01+m12−m02

v2 =m02+m12−m01

20
24

-0
8-
16 Opacity Micromaps

Opacity Micromaps Construction

This naturally begs the question: How do you actually look-up a value in the micromap? Which,
as if by coincidence, leads us to our first novel contribution: A new simpler algorithm to explain
the barycentrics-to-index mapping.

1. Starting with a triangle, we divide each edge at the midpoint, thus forming 4 new
triangles, which I have taken to calling the Left, Middle, Right and Top subtriangle. These
are also indexed as seen earlier or up here.

(Next Slide)

2. Then, we can use a bit of geometry to derive these equations to link the midpoints to the
vertices.



Opacity Micromaps Construction
uv2index BarycentricsToSpaceFillingCurveIndex

L :=











uL = u− v−w
vL = 2v
wL = 2w

M :=











uM = u+ v−w
vM = v+w− u
wM = u+w− v

R :=











uR = 2u
vR = v− u−w
wR = 2w

T :=











uT = 2u
vT = 2v
wT = w− u− v

G.Waldemarson 5/30

Opacity Micromaps Construction
uv2index BarycentricsToSpaceFillingCurveIndex

L :=











uL = u− v−w
vL = 2v
wL = 2w

M :=











uM = u+ v−w
vM = v+w− u
wM = u+w− v

R :=











uR = 2u
vR = v− u−w
wR = 2w

T :=











uT = 2u
vT = 2v
wT = w− u− v

20
24

-0
8-
16 Opacity Micromaps

Opacity Micromaps Construction

3. Furthermore, we can express each vertex and midpoint with barycentric coordinates: And
with a bit of substitution, we can find expressions that let us use the original coordinates
to update the barycentrics in terms of the subtriangles.

4. This can then be repeated recursively to any desired subdivision level. (Although, note
that the coordinates should be rotated for the Top and Middle subtriangles.)

There are a little more to this algorithm though, but those details only applies to the literal edge
cases, to ensure that rounding is correct, so please see the paper for that.

(For the interested reader: The algorithms for this is included among the extra slides.)



Succinct Opacity Micromaps

Succinct Opacity Micromaps

20
24

-0
8-
16 Succinct Opacity Micromaps



Succinct Opacity Micromaps

G.Waldemarson 6/30

Succinct Opacity Micromaps

20
24

-0
8-
16 Succinct Opacity Micromaps

Succinct Opacity Micromaps

Which leads us to what is arguably our main contribution in this paper: the compression algo-
rithm.

As I worked with the micromaps, I found plenty of cases where large swathes of the map would
contain the same value, some examples you can see in this small texture atlas from our good
old Sponza scene. As such, I looked at the index-mapping algorithm and thought: You know,
wouldn’t it be a good idea if we didn’t have to go all the way to the bottom to retrieve the value
if we know that all values in that sub-area are going to be the same? That is, having a kind of
marker telling us that there is not going to be anything new after this?



Succinct Opacity Micromaps
Tree Construction

G.Waldemarson 7/30

Succinct Opacity Micromaps
Tree Construction

20
24

-0
8-
16 Succinct Opacity Micromaps

Succinct Opacity Micromaps

And that is more or less what I did: I converted the micromap to a 4-way tree structure where
each node represents the area of all underlying sub-triangles. (Effectively mimicking the call-
stack of the indexing algorithm.)

There are a few ways of representing such a tree: Implicitly, in an array; the same way we often
represent binary trees, or using pointers.

Storing the tree implicitly would be ideal, but the trees are not likely to be balanced; so this
would lead to a lot of wasted space. Pointers could naturally handle this aspect better, but
the values we are storing are very small, so adding pointers to them felt like step in the wrong
direction.



Succinct Opacity Micromaps
Tree Construction

1 0 0

0 1 0 2

1

0 0 0

0 0 0

1

0

Node combining

Tree Coding

Succinct Tree Encoding

Tree

Data 0b10_0001_0000_0001

0b0_0001_0001

G.Waldemarson 8/30

Succinct Opacity Micromaps
Tree Construction

1 0 0

0 1 0 2

1

0 0 0

0 0 0

1

0

Node combining

Tree Coding

Succinct Tree Encoding

Tree

Data 0b10_0001_0000_0001

0b0_0001_0001

20
24

-0
8-
16 Succinct Opacity Micromaps

Succinct Opacity Micromaps

However, by using a type of data-structure referred to as a succinct data-structure we can store
the tree in an almost optimal way; and one way of creating such a structure is by traversing the
tree in a depth-first fashion, setting a bit to 1 for every internal node, and 0 for every leaf node.
The resulting bit-string will thus uniquely represent the tree, and any node data, such as opacity
values, can be tucked on at the end of this string.

Thus, the way I compressed micromaps are as follows:

1. In a bottom-up fashion, combine any group of sub-triangles with the same value to a
single node.

2. Repeat this for all subdivision levels, forming our 4-way tree, and, then

3. Encode this succinctly as a bit-stream.

– And for clarity, the tree and opacity values, or data bits are shown separately here.



Succinct Opacity Micromaps
Tree Construction

TreeData

0b10000100000001000010001

Concatenate

Tree

Data 0b10_0001_0000_0001

0b0_0001_0001

0b10000100000000000000000001010101

Original

G.Waldemarson 9/30

Succinct Opacity Micromaps
Tree Construction

TreeData

0b10000100000001000010001

Concatenate

Tree

Data 0b10_0001_0000_0001

0b0_0001_0001

0b10000100000000000000000001010101

Original

20
24

-0
8-
16 Succinct Opacity Micromaps

Succinct Opacity Micromaps

And even in this relatively small case, by comparing final bit-string to the original, it is pretty
clear that there are some potential for compression here.



Memory Footprint Improvement

Best≈ 1 % of the original size.

G.Waldemarson 10/30

Memory Footprint Improvement

Best≈ 1 % of the original size.20
24

-0
8-
16 Succinct Opacity Micromaps

Memory Footprint Improvement

And looking at the average results over all scenes in this work, this turned out to be very effective
at reducing the footprint of themicromaps: Typically down to about 45-25%of the original size,
but in some extreme cases such as for this twig from the New Sponza scene, down to less than
1 %, or expressed another way: compressed 110 times.



Succinct Opacity Micromaps
Look-up Algorithm

ba

0

2

1
2

3 1 0

3

a

b

i

0b0001_0000_0011
ab i

G.Waldemarson 11/30

Succinct Opacity Micromaps
Look-up Algorithm

ba

0

2

1
2

3 1 0

3

a

b

i

0b0001_0000_0011
ab i20

24
-0
8-
16 Succinct Opacity Micromaps

Succinct Opacity Micromaps

However, we cannot just compress the micromap, we also need a way of looking-up values from
this new representation. We can do that as follows, starting from the root node:

1. After intersecting a triangle, represented by this dot, figure out the index of the child we
should visit, and update the barycentric coordinates to that sub-triangle; both of which
can be extracted with a single step from the indexing algorithm I presented earlier.

2. This number is now a counter: We need to step at least this number of bits into the
bit-string that represents the tree to find the next node to visit.

2.1 However, If we encounter another internal node before this counter is zero, we
need to also pass through all children owned by it as well, as you can see at the
node and bit locations labeled i. In other words, we increment our counter by 4.

3. Finally, when this counter is 0, we have found the next node to investigate:

3.1 If the bit value is 1: We repeat the above procedure, going deeper into the tree.
3.2 If the value is 0: We are done and the number of leaf nodes, that is, zeros passed

until this point is the index into the trailing data bit-stream where we will find our
opacity value.



Frametime Performance

Frametime Performance

20
24

-0
8-
16 Frametime Performance



Methods

• Software Micromaps
• Succinct Tree
• Fast-Build Micromaps

• Fast-Trace Micromaps
• Bitmask
• Texture

G.Waldemarson 12/30

Methods

• Software Micromaps
• Succinct Tree
• Fast-Build Micromaps

• Fast-Trace Micromaps
• Bitmask
• Texture

20
24

-0
8-
16 Frametime Performance

Methods

And with a method for looking up values, we obviously need to compare it against other ones.
Thus, we have looked at the frame-time performance, and in total, investigated six different
opacity algorithms:

Micromap Micromaps emulated in software,

Tree the tree encoded micromaps I just described,

Fast-Build (FB) Vulkan based micromaps built with the Fast-Build flag,

Fast-Trace (FT) Vulkan based micromaps built with the Fast-Trace flag,

Bitmask A bitmask where every 1 or 2 bits represents an opacity value, and finally,

Texture by using the original alpha texture.

In all cases except the texturing method, we evaluate both the 2-state and 4-state modes.

Perhaps a bit arbitrary, we also lock the micromap subdivision levels to a fixed value for each
evaluation. And, as you can see here, for 2-state micromaps this will determine the final look
of the scene, but has no aesthetic effect on 4-state ones.

(Typically, the subdivision level should be set on a per-triangle basis as discussed in the paper).



Scenes

CryTek Sponza [2011] Ecosys [1998] New Sponza [2022]

San Miguel [2010] Landscape [2016]

G.Waldemarson 13/30

Scenes

CryTek Sponza [2011] Ecosys [1998] New Sponza [2022]

San Miguel [2010] Landscape [2016]20
24

-0
8-
16 Frametime Performance

Scenes

As for the scenes: Micromaps are really only useful in scenes with lots of alpha masks, so I chose
to use the following scenes to try out these methods, which includes a decent sampling of old
and modern content and several orders of geometric complexity.

And as I hope you can see from the images, I only used a basic refining ambient occlusion ren-
dering algorithm to keep things simple.

(This also means that more complicated shading algorithms would likely benefit more thanwhat
these results are showing, but that is out-of-scope for this paper.)



Frametime Performance
General Results — Landscape [2016]

RTX 3080 RTX 4080

G.Waldemarson 14/30

Frametime Performance
General Results — Landscape [2016]

RTX 3080 RTX 4080

20
24

-0
8-
16 Frametime Performance

Frametime Performance

Thankfully, we do not really have to look at reams of data to discern any particular pattern: Ba-
sically all scenes have plots with roughly the same shape, and In short, we can see the following:

• Using micromaps, software or hardware based, is in general better than using either
bitmasks or textures, but not always by a large margin:

– And, for software based micromaps, you got a bit of a mixed bag of results:
Sometimes you lost as much as 30 % or gained up to 16 %,

– Whereas a 4080 with hardware acceleration would only lose at most 2 %, but gain up
to 29 %.

• The tree-look-up algorithm only performs okay up to 3 or 4 levels, after which it scales
out of control. Something I will get back to in a bit.

• (Interestingly, I was expecting the fast-build and fast-trace to perform basically
equivalently, but there is a noticable delta between these results, if small (orange/red)).

(Errata message: The paper is incorrectly duplicating the Ecosys plots for the Landscape frame-
time results. Thus, please refer to these ones instead.)



Frametime Performance
New Sponza [2022]

RTX 3080 RTX 4080

G.Waldemarson 15/30

Frametime Performance
New Sponza [2022]

RTX 3080 RTX 4080

20
24

-0
8-
16 Frametime Performance

Frametime Performance

And if we change things around to a somewhat easier scene; a single twig from the
New Sponza [2022] scene, we can see a bit more interesting performance patterns. Although,
note that I have removed the tree results here to allow us to actually see things.

The most notable part here is that for a 3080, we will only ever benefit over just using the texture
in this very small region around 9 subdivision levels. Similarly, for a 4080, we must have at least
4 subdivisions before we will see any benefits.

However, please note the axes on these plots: The ranges are relatively small, and the scene is a
bit unrealistic.



The Problem(s)

0 0

3 3 1 1 0 0 0

3 3 1 1

G.Waldemarson 16/30

The Problem(s)

0 0

3 3 1 1 0 0 0

3 3 1 1

20
24

-0
8-
16 Frametime Performance

The Problem(s)

Which finally brings me back to the tree-method. Why does it perform so poorly? With the data
packed so much more densely, surely caching should help it be at least comparable to the other
methods?

I believe the main issue is this: When we want to find one of the right-most children, we end up
having to scan through all the intervening subtrees, as seen here.

This is fine when the tree is small, but is not acceptable as the tree gets bigger: On average it
almost quadruples the number of bits that has to be scanned for each additional tree-level.

This is obviously problematic for something that ideally should be comparable to an instant O (1)
look-up, similar to a texture fetch.



Future Work

• Need a different (succinct) tree
• Other micromap types?

– Lossy micromaps?
– Generalized micromaps?

G.Waldemarson 17/30

Future Work

• Need a different (succinct) tree
• Other micromap types?

– Lossy micromaps?
– Generalized micromaps?

20
24

-0
8-
16 Frametime Performance

Future Work

So, how would we fix this in the future? A tree-based structure do seem like a good fit for
compressing micromaps, but this initial look-up algorithm requires some rework to be practical
for larger maps or tomake it feasible to realize in hardware alongwith the rest of the ray tracing
pipeline. Thankfully, there are numerous ways of re-structuring the tree, one of which is bound
to be more practical.

Also, there are currently only two types of micromaps: opacity and displacement. But, there
seems like there is at least some work ongoing to create several other types of micromaps to
store colors, normals or similar data. It would be interesting to see if such Attribute Micromaps
could be compressed using this or similar techniques.

Further, I only considered lossless techniques during this work, but it may be interesting to also
consider some kind of lossy compression to provide some approximation of level-of-detail for
far-away objects.

And interestingly, the indexing algorithm I presented in the beginning is very generalizable:
The same basic algorithm could be used on a number of different shapes, so investigating this
further could lead to some interesting applications.



Conclusion

1. Indexing Algorithm:
– uv2index

2. Succinct Opacity Micromaps

3. Performance Comparison

G.Waldemarson 18/30

Conclusion

1. Indexing Algorithm:
– uv2index

2. Succinct Opacity Micromaps

3. Performance Comparison

20
24

-0
8-
16 Frametime Performance

Conclusion

But to wrap things up: As a part of this work, we have done the following:

• Provided an arguably more descriptive algorithm for mapping barycentric coordinates to
micromap indices, and,

• Used said method to create a compression algorithm for micromaps based on Succinct
Trees, which is capable of reducing the memory footprint by more than 110 times.

• We also evaluated the frame-time performance of this method, quickly realizing that
while the method works well for small maps, it is not practical for larger ones in its
current form.

• And finally, that result was compared to various other methods, as well as that of the
official (Vulkan) Opacity Micromaps, which itself showed a performance uplifts by up to
29 %.



Thanks for Listening
Questions

• Thanks for listening!
• Questions and Answers ?

G.Waldemarson 19/30

Thanks for Listening
Questions

• Thanks for listening!
• Questions and Answers ?

20
24

-0
8-
16 Frametime Performance

Thanks for Listening

And with all that, I think it’s about time to open up for questions, and hopefully, answers!



Acknowledgements

Succinct Opacity Micromaps
Gustaf Waldemarson Michael Doggett

This work was partially supported by the Wallenberg AI, Autonomous Systems and
Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.

Special thanks to. . .
– Rikard Olajos @ LUGG
– Simone Pellegrini @ Arm
– Mathieu Robart @ Arm

G.Waldemarson 20/30

Acknowledgements

Succinct Opacity Micromaps
Gustaf Waldemarson Michael Doggett

This work was partially supported by the Wallenberg AI, Autonomous Systems and
Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.

Special thanks to. . .
– Rikard Olajos @ LUGG
– Simone Pellegrini @ Arm
– Mathieu Robart @ Arm20

24
-0
8-
16 Frametime Performance

Acknowledgements



The End

The End

20
24

-0
8-
16 Frametime Performance



Extras

Extras

20
24

-0
8-
16 Extras



Where may we Lose performance?

G.Waldemarson 22/30

Where may we Lose performance?

20
24

-0
8-
16 Extras

Where may we Lose performance?



Degenerate Trees

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Example degenerate case for the succinct tree compression: Instead of actually
reducing the number of nodes, it is forced to add 5 internal ones.

G.Waldemarson 23/30

Degenerate Trees

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Example degenerate case for the succinct tree compression: Instead of actually
reducing the number of nodes, it is forced to add 5 internal ones.

20
24

-0
8-
16 Extras

Degenerate Trees



Opacity Micromaps Splits
Rounding Issues

G.Waldemarson 24/30

Opacity Micromaps Splits
Rounding Issues

20
24

-0
8-
16 Extras

Opacity Micromaps Splits

This strategy will take you most of the way, but it will unfortunately not work for all cases. If
we zoom in on a few of the subtriangles and highlight the rounding patterns, we get this kind
of behavior. One could argue whether is wrong or not, but as the micromap extension actually
have a reference algorithm, we know that the correct pattern should be like this. (Next Slide)

And here I have also highlighted a few vertices that ended being a bit troublesome. (Flip Back
and Forth)

Thankfully, this is straight-forward to correct by keeping track of whenever we recurse into a
Middle or Top subtriangle, but I will leave those details for the paper itself, as they are concep-
tually only necessary to ensure correct rounding in literal edge cases.

(We also validated that this new algorithm is equivalent to the official one by using the ACL2
solver, at least for rational numbers. It is still not clear whether this is true for real or floating
point numbers however, but the extensive testing we have done so far at least suggests so.)



Opacity Micromaps Splits
Rounding Issues

G.Waldemarson 24/30

Opacity Micromaps Splits
Rounding Issues

20
24

-0
8-
16 Extras

Opacity Micromaps Splits

This strategy will take you most of the way, but it will unfortunately not work for all cases. If
we zoom in on a few of the subtriangles and highlight the rounding patterns, we get this kind
of behavior. One could argue whether is wrong or not, but as the micromap extension actually
have a reference algorithm, we know that the correct pattern should be like this. (Next Slide)

And here I have also highlighted a few vertices that ended being a bit troublesome. (Flip Back
and Forth)

Thankfully, this is straight-forward to correct by keeping track of whenever we recurse into a
Middle or Top subtriangle, but I will leave those details for the paper itself, as they are concep-
tually only necessary to ensure correct rounding in literal edge cases.

(We also validated that this new algorithm is equivalent to the official one by using the ACL2
solver, at least for rational numbers. It is still not clear whether this is true for real or floating
point numbers however, but the extensive testing we have done so far at least suggests so.)



Opacity Micromaps Lookup Function – 1
def uv2index(u, v, level):

w = 1.0 - (u + v)
def rec(idx, d, u, v, w):

if d == level:
return idx

L, M, R, T = 0, 1, 2, 3
if w > 0.5:

return rec(4 * idx + L, d + 1, 2*u, 2*v, (w - u - v))
elif v >= 0.5:

return rec(4 * idx + T, d + 1, 2*w, (v - u - w), 2*u)
elif u >= 0.5:

return rec(4 * idx + R, d + 1, (u - v - w), 2*v, 2*w)
else:

return rec(4 * idx + M, d + 1, (u + v - w), (w + u - v), (v + w - u))
return rec(0, 0, u, v, w)

G.Waldemarson 25/30

Opacity Micromaps Lookup Function – 1
def uv2index(u, v, level):

w = 1.0 - (u + v)
def rec(idx, d, u, v, w):

if d == level:
return idx

L, M, R, T = 0, 1, 2, 3
if w > 0.5:

return rec(4 * idx + L, d + 1, 2*u, 2*v, (w - u - v))
elif v >= 0.5:

return rec(4 * idx + T, d + 1, 2*w, (v - u - w), 2*u)
elif u >= 0.5:

return rec(4 * idx + R, d + 1, (u - v - w), 2*v, 2*w)
else:

return rec(4 * idx + M, d + 1, (u + v - w), (w + u - v), (v + w - u))
return rec(0, 0, u, v, w)20

24
-0
8-
16 Extras

Opacity Micromaps Lookup Function – 1

Implemented in Python, the basic mapping algorithm could look like this.



Opacity Micromaps Lookup Function – 2
def uv2index(u, v, level):

w = (1.0 - (u + v))
def rec(i, d, mflip, tflip, u, v, w):

if d == level: return i
L, M, R, T = (2, 1, 0, 3) if tflip else (0, 1, 2, 3)
if w > 0.5:

return rec(4 * i + L, d + 1, mflip, tflip, 2*u, 2*v, (w - u - v))
elif v >= 0.5 and not (v == 0.5 and mflip):

return rec(4 * i + T, d + 1, mflip, not tflip, 2*u, (v - u - w), 2*w)
elif u >= 0.5 and not (v == 0.5 and mflip):

return rec(4 * i + R, d + 1, mflip, tflip, (u - v - w), 2*v, 2*w)
else:

return rec(4 * i + M, d + 1, not mflip, tflip,
(u + v - w), (w + u - v), (v + w - u))

return rec(0, 0, False, False, u, v, w)

G.Waldemarson 26/30

Opacity Micromaps Lookup Function – 2
def uv2index(u, v, level):

w = (1.0 - (u + v))
def rec(i, d, mflip, tflip, u, v, w):

if d == level: return i
L, M, R, T = (2, 1, 0, 3) if tflip else (0, 1, 2, 3)
if w > 0.5:

return rec(4 * i + L, d + 1, mflip, tflip, 2*u, 2*v, (w - u - v))
elif v >= 0.5 and not (v == 0.5 and mflip):

return rec(4 * i + T, d + 1, mflip, not tflip, 2*u, (v - u - w), 2*w)
elif u >= 0.5 and not (v == 0.5 and mflip):

return rec(4 * i + R, d + 1, mflip, tflip, (u - v - w), 2*v, 2*w)
else:

return rec(4 * i + M, d + 1, not mflip, tflip,
(u + v - w), (w + u - v), (v + w - u))

return rec(0, 0, False, False, u, v, w)20
24

-0
8-
16 Extras

Opacity Micromaps Lookup Function – 2

Implemented in Python, the final mapping algorithm could look like this.



Succinct Opacity Micromaps
Look-up Algorithm — 1

uint t = 0, d = 0;
while (true)
{

bool is_internal = tree_bit(t);
if (is_internal)
{

t += 1;
uint c = step();
t, d = bitscan(tree_len, c, t, d);

}
else
{

return opacity_value(tree_len, d);
}

}

G.Waldemarson 27/30

Succinct Opacity Micromaps
Look-up Algorithm — 1

uint t = 0, d = 0;
while (true)
{

bool is_internal = tree_bit(t);
if (is_internal)
{

t += 1;
uint c = step();
t, d = bitscan(tree_len, c, t, d);

}
else
{

return opacity_value(tree_len, d);
}

}20
24

-0
8-
16 Extras

Succinct Opacity Micromaps

(Extra slide, describe tree-look-up algorithm)



Succinct Opacity Micromaps
Look-up Algorithm — 2

uvec2 bitscan(uint tree_len, uint child, uint t, uint d)
{

while (t < tree_len && c > 0)
{

bool is_internal = opacity_tree_bit(t);
if (is_internal)

child += 4;
else

d += 1;
t += 1;
child -= 1;

}
return uvec2(t, d);

}

G.Waldemarson 28/30

Succinct Opacity Micromaps
Look-up Algorithm — 2

uvec2 bitscan(uint tree_len, uint child, uint t, uint d)
{

while (t < tree_len && c > 0)
{

bool is_internal = opacity_tree_bit(t);
if (is_internal)

child += 4;
else

d += 1;
t += 1;
child -= 1;

}
return uvec2(t, d);

}20
24

-0
8-
16 Extras

Succinct Opacity Micromaps

(Extra slide, describe bitscan algorithm)



References I

Oliver Deussen, Pat Hanrahan, Bernd Lintermann, Radomı�r Mech, Matt Pharr, and
Przemyslaw Prusinkiewicz. 1998. “Realistic modeling and rendering of plant ecosystems.”
In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH ’98). Association for Computing Machinery, New York, NY, USA,
275–286. ISBN: 0897919998. DOI: 10.1145/280814.280898.
Morgan McGuire Frank Meinl Marko Dabrovic. 2011. CryTek Sponza.
https://www.cryengine.com/asset-db/product/crytek/sponza-sample-scene. (2011).

Holger Gruen, Carsten Benthin, and Sven Woop. Aug. 2020. “Sub-Triangle Opacity Masks
for Faster Ray Tracing of Transparent Objects.” Proc. ACM Comput. Graph. Interact. Tech.,
3, 2, (Aug. 2020). DOI: 10.1145/3406180.
Timm Dapper Jan-Walter Schliep Burak Kahraman. 2016. Landscape.
https://www.laubwerk.com. (2016).

Guillermo M. Leal Llaguno. 2010. San Miguel. https://www.pbrt.com. (2010).

References I

Oliver Deussen, Pat Hanrahan, Bernd Lintermann, Radomı�r Mech, Matt Pharr, and
Przemyslaw Prusinkiewicz. 1998. “Realistic modeling and rendering of plant ecosystems.”
In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH ’98). Association for Computing Machinery, New York, NY, USA,
275–286. ISBN: 0897919998. DOI: 10.1145/280814.280898.
Morgan McGuire Frank Meinl Marko Dabrovic. 2011. CryTek Sponza.
https://www.cryengine.com/asset-db/product/crytek/sponza-sample-scene. (2011).

Holger Gruen, Carsten Benthin, and Sven Woop. Aug. 2020. “Sub-Triangle Opacity Masks
for Faster Ray Tracing of Transparent Objects.” Proc. ACM Comput. Graph. Interact. Tech.,
3, 2, (Aug. 2020). DOI: 10.1145/3406180.
Timm Dapper Jan-Walter Schliep Burak Kahraman. 2016. Landscape.
https://www.laubwerk.com. (2016).

Guillermo M. Leal Llaguno. 2010. San Miguel. https://www.pbrt.com. (2010).20
24

-0
8-
16 Extras

References

https://doi.org/10.1145/280814.280898
https://doi.org/10.1145/3406180
https://doi.org/10.1145/280814.280898
https://doi.org/10.1145/3406180


References II

Frank Meinl, Katica Putica, Cristiano Siqueria, Timothy Heath, Justin Prazen,
Sebastian Herholz, Bruce Cherniak, and Anton Kaplanyan. 2022. Intel Sample Library.
https://www.intel.com/content/www/us/en/developer/topic-technology/graphics-
processing-research/samples.html. (2022).

Eric Werness. Aug. 24, 2022. VK_EXT_opacity_micromap. The Khronos Group Inc. (Aug. 24,
2022). Retrieved May 11, 2023 from https://registry.khronos.org/vulkan/specs/1.3-ex
tensions/man/html/VK_EXT_opacity_micromap.html.

References II

Frank Meinl, Katica Putica, Cristiano Siqueria, Timothy Heath, Justin Prazen,
Sebastian Herholz, Bruce Cherniak, and Anton Kaplanyan. 2022. Intel Sample Library.
https://www.intel.com/content/www/us/en/developer/topic-technology/graphics-
processing-research/samples.html. (2022).

Eric Werness. Aug. 24, 2022. VK_EXT_opacity_micromap. The Khronos Group Inc. (Aug. 24,
2022). Retrieved May 11, 2023 from https://registry.khronos.org/vulkan/specs/1.3-ex
tensions/man/html/VK_EXT_opacity_micromap.html.

20
24

-0
8-
16 Extras

References

https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VK_EXT_opacity_micromap.html
https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VK_EXT_opacity_micromap.html
https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VK_EXT_opacity_micromap.html
https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VK_EXT_opacity_micromap.html

	Opacity Micromaps
	Succinct Opacity Micromaps
	Frametime Performance
	Extras
	References

