
PARALLEL AXIS SPLIT TASKS FOR
BOUNDING VOLUME CONSTRUCTION WITH OPENMP

Gustaf Waldemarson & Michael Doggett
Arm Sweden AB, Lund University, Faculty of Engineering (LTH)

PARALLEL AXIS SPLIT TASKS FOR
BOUNDING VOLUME CONSTRUCTION WITH OPENMP

Gustaf Waldemarson & Michael Doggett
Arm Sweden AB, Lund University, Faculty of Engineering (LTH)

Introduction
Fast BVH construction is necessary to ensure fast ray-tracing, so a parallel build
approach is needed. Thus, in this paper we propose a method of using OpenMP
tasking to parallelize the splitting algorithm and thus improve build performance,
improving the construction time by between 3 and 5 times on an 8-core machine
with a minimal amount of work and negligible quality reduction of the final BVH.

OpenMP

Task I Task II Task III Task I Task II Task III

Figure 1: Graphical visualization of the typical OpenMP usage for splitting up tasks into parallel regions.

Tasking Variants

void sbvh_build(const vector<Reference> &refs)
{
    if (create_leaf_p(refs)) return leaf_node();
    ObjectSplit object = object_cost(refs);
    SpatialSplit spatial = spatial_cost(refs);
    NodeSplit split;
    if (spatial.cost < object.cost)
        split = spatial_split();
    else
        split = object_split();
    build(split.left_references);
    build(split.right_references);
}

NoOpenMP / NoTasking

Tasking / Default

#pragma omp task
    build(split.left_references);
#pragma omp task
    build(split.right_references);
#pragma omp taskwait

Figure 2: High level overview of the SBVH construction algorithm by Stich et al., 2009, and how OpenMP tasking is applied to it.

Object Cost Spatial Cost

SplitLeaf? Recurse

X

Y

Z

X

Y

Z

Figure 3: Visualization of how the parallel tasks are structured for our SBVH algorithm.

Axis Search Variants

NoOpenMP ParallelFor Tasks Taskloop

SpatialSplit split_spatial()
{

for (size_t ax = 0; ax < 3; ++ax)
{
}

#pragma omp parallel for
for (size_t ax = 0; ax < 3; ++ax)
{
}

for (size_t ax = 0; ax < 3; ++ax)
#pragma omp task
{
}
#pragma omp taskwait

#pragma omp taskloop
for (size_t ax = 0; ax < 3; ++ax)
{
}

Figure 4: Beyond OpenMP tasking from figure 2, the object and spatial axis searches may also be accelerated, as each axis is independent. However, there are numerous ways to use OpenMP when tasking is already being applied elsewhere.
Thus, the following OpenMP #pragma variants were applied to these to loop to find the best way. Thus, in total we have 8 different variations: With or without tasking, and 4 different ways to accelerate the inner axis for-loops.

Scaling Results

G
C
C

C
la
ng

Rendering Times

Figure 5: Estimated rendering times for each scene and variant.

Scenes

Sponza: 393meshes, 262 267 triangles. Bistro: 1mesh, 3 847 246 triangles. Hairball: 2meshes, 2 880 002 triangles. Buddah: 1mesh, 1 087 720 triangles. San-Miguel: 287meshes, 9 980 699 triangles. Powerplant: 21meshes, 12 759 246 triangles.

References
Dagum, L., & Menon, R. (1998). Openmp: An industry standard api for shared-memory programming. Computational Science & Engineering, IEEE, 5(1), 46–55.
Stich, M., Friedrich, H., & Dietrich, A. (2009). Spatial splits in bounding volume hierarchies. Proceedings of the Conference on High Performance Graphics 2009, 7–13. https://doi.org/10.1145/1572769.1572771

https://doi.org/10.1145/1572769.1572771

