
Handling Custom Data in glTF Files with
Exporter/Importer Plugins

Gustaf Waldemarson

Arm & Lund University

Handling Custom Data in glTF Files with
Exporter/Importer Plugins

Gustaf Waldemarson

Arm & Lund University

20
24

-0
8-
16

Ah, I think we are just about ready to start!

Thanks everyone for coming! (TBD: And it’s nice to see so many people here). I should warn you
all though, this is a mostly technical, or rather, three technical topics. As such, I’m afraid that
the supply of neat renders and images may run a bit sparse at time, but I hope you will all learn
at least something from all this!



Who am I?
• Industrial PhD Student at the Lund University Graphics Group
• Software Engineer at Arm

- https://gustafwaldemarson.com

1/57G. Waldemarson

Who am I?
• Industrial PhD Student at the Lund University Graphics Group
• Software Engineer at Arm

- https://gustafwaldemarson.com

1/57

20
24

-0
8-
16

Who am I?

But first, I think some kind of introduction is in order: My name is Gustaf Waldemarson, a soft-
ware engineer at Arm, where I have been helping out with various bits and bobs of the Mali
driver stack, (especially the parts related to ray-tracing).

And to top it all off, I’m also a so-called Industrial PhD student at Lund University in Sweden
where I also work with various ray-tracing related topics, some of which will make a small ap-
pearance later in this talk.

All that said, I am obliged to say that I do not represent Arm during this event, nor is the content
is sponsored by Arm, and any views or opinions herein are entirely my own.

https://gustafwaldemarson.com
https://gustafwaldemarson.com


What is all this?

Custom
Data

2/57G. Waldemarson

What is all this?

Custom
Data

2/57

20
24

-0
8-
16

What is all this?

So, let’s actually get into the meat of things: As I hope you can imagine, the topic I will discuss
is about managing custom data with the glTF and Blender. As such, I imagine the audience to
be something like this:

On one side, we have people who know and work with glTF, on the other, we have Blender
developers and plugin-writers and lastly, some people who have some kind of data that isn’t
natively supported in there. Which could be anything from some tree data, some funky texture
or data stored in a database somewhere.



What is all this?

Custom
Data

3/57G. Waldemarson

What is all this?

Custom
Data

3/57

20
24

-0
8-
16

What is all this?

My goal today is not to make you an expert on all these topics, but what I want is to slowly pull
these groups together, just a little bit, such that there is a little bit of overlap. And thus make
the work for anyone that want to do something similar to the things I have done just a bit easier.

And of course, I hope to do that with a few (hopefully) convincing examples or use-cases.



Agenda

• glTF?
– What is it?
– Data-models

• The glTF Importer/Exporter Addon

– Blender
– tinyglTF

• Extension Mechanism
• Example Plugin: Watermarking

• Customization Functions / Hooks
• Micromap Generator Plugin
• Importers

4/57G. Waldemarson

Agenda

• glTF?
– What is it?
– Data-models

• The glTF Importer/Exporter Addon

– Blender
– tinyglTF

• Extension Mechanism
• Example Plugin: Watermarking

• Customization Functions / Hooks
• Micromap Generator Plugin
• Importers

4/57

20
24

-0
8-
16

Agenda

With that, we have a few different areas to cover! First, I will naturally start by talking a bit
about glTF itself; what it is and what kind of data it stores and so forth.

Second, I’ll briefly go over how Blender works with glTF-files, and talk a bit about the Addon
that drives that process, as well as discussing at least one other tool you might come across
for working with such files, such as when you are pulling in the data into your own rendering
frameworks.

After that, we get to the custom things themselves. Here, I first, need to present the Extension
mechanism that makes most of this possible, after which I’ll show in detail how to construct a
simple example plugin that simply performs a bit of watermarking on each image that is ex-
ported.

(After that I’ll also show some other functions, or hooks as they called that we can modify and
how these are generally structured.)

I’ll then move on to my primary use of these facilities: Namely generating a thing known as
micromaps during the glTF export process. And finally, I’ll wrap things up by saying a few words
about the Importer side of glTF as well.



What is glTF?

5/57G. Waldemarson

What is glTF?

5/57

20
24

-0
8-
16 glTF

What is glTF?

So where should we start? Well, for completeness, we really should start talking about what
glTF is.

In short, it is a royalty free format for transmitting (and loading) 3D scenes and models, while
keeping the data as small as possible, both while in-memory and when stored on disk. Addi-
tionally, and most interesting to us, it is very extensible, which is what makes everything else I
will be talking about possible.

That said, glTF is not a universal 3D modeling format. The base primitives it supports are dis-
tinctly geared towards real-time rendering use-cases. In fact, many of the constants used in the
format map directly to the equivalent API values in OpenGL, all to make it as seamless as possible
to load all data and send it directly to the GPU. But, the format is of course not limited to that.
As an example, the material model is very general, and with the aforementioned extension sys-
tem, it is easily extended.

I should mention that I will not go into detail about how to author glTF scenes, but will instead
focus on some of the technical aspects we need to know about. That said, Julien Duroure, one
of the primary authors of the glTF importer/exporter addon, that I’ve literally built everything
on-top-of, will have a session after this in the class-room venue that will deal with this topic in
more detail.



Types of glTF Files

• GLTF_EMBEDDED
• GLTF_SEPARABLE
• GLTF_BINARY

(.gltf)
(.gltf, .bin + textures)
(.glb)

6/57G. Waldemarson

Types of glTF Files

• GLTF_EMBEDDED
• GLTF_SEPARABLE
• GLTF_BINARY

(.gltf)
(.gltf, .bin + textures)
(.glb)

6/57

20
24

-0
8-
16 glTF

Types of glTF Files

Starting with the files themselves: There are essentially three versions of glTF, which in Blender
is exposed as GLTF_EMBEDDED, SEPARABLE or BINARY.

The first two are essentially two versions of a JSON file and only really differs in how some of the
data is packed.

• For the embedded format, all data (even images) are packed in the same file as base-64
encoded strings.

– This makes it easy to transport and share,
– But harder to re-work or re-author.

• For the other, the data is instead packed in separate files next to the primary .gltf-file.

– Easier to modify some data after the fact.

As for the last format, it is an entirely binary format (and the most compact version), that I like
to think of as a binary equivalent to JSON, but of course, there are more nuances to it than that,
but that is nothing we will get into here.



Overview
scene

node

camera mesh

accessor

buffer view

buffer

material

texture

samplerimage

skin

animation

7/57G. Waldemarson

Overview
scene

node

camera mesh

accessor

buffer view

buffer

material

texture

samplerimage

skin

animation

7/57

20
24

-0
8-
16 glTF

Overview

So, let us take a look at the insides of a glTF-file instead shall we? In brief, the entire file is
actually really well encapsulated with a single relation diagram:

Which lists almost all types of objects that exists in the glTF-world.

And while this looks a bit complicated, if we pull it apart, we can actually identify some key
components that we may care a bit more about.



Scene Graph

scene

node

camera meshskin

8/57G. Waldemarson

Scene Graph

scene

node

camera meshskin

8/57

20
24

-0
8-
16 glTF

Scene Graph

This part defines the scene graph(s) of the file.

And interestingly, it also contains the bone hierarchy for skinned animations, but that is another
side note.



Scene Graph

root

child-1

T=[0, 180, 0]

child-2

R=[-0.707, 0, 0, 0.707]

"scenes": [ { "nodes": [0] } ],
"nodes": [

{
"name": "root",
"children": [1, 2]

},
{

"name": "child-1",
"translation": [ 0, 180, 0 ],

},
{

"name": "child-2",
"rotation": [-0.707, 0, 0, 0.707],

}
]

9/57G. Waldemarson

Scene Graph

root

child-1

T=[0, 180, 0]

child-2

R=[-0.707, 0, 0, 0.707]

"scenes": [ { "nodes": [0] } ],
"nodes": [

{
"name": "root",
"children": [1, 2]

},
{

"name": "child-1",
"translation": [ 0, 180, 0 ],

},
{

"name": "child-2",
"rotation": [-0.707, 0, 0, 0.707],

}
]

9/57

20
24

-0
8-
16 glTF

Scene Graph

The way these are structured, is that each scene in a file contains an array of node indices that
collectively create a graph (or more accurately, a collection of trees).

Such as in this trivial example: Where we only have a single scene with a root node with two
child nodes, each with a different associated transform: One with a rotation, and the other with
a translation.

And this use of indices is a recurring theme in glTF: To keep everything as compact as possible,
objects are almost always stored in linear arrays which are then cross-reference with indices
when necessary.



Shading Model

material

texture

samplerimage

10/57G. Waldemarson

Shading Model

material

texture

samplerimage

10/57

20
24

-0
8-
16 glTF

Shading Model

Moving on: This next part define the shading model used by the objects in the scenes.

By default, a Physically Based shading model that is called the “metallic-roughness” model is
used, which essentially defines up to 3 textures that we may care about (a color, metallic-ness
factor and roughness factor). Again, there are more details, but we won’t really have time to
go into them.



Data Storage

accessor

buffer view

buffer

texture

image

11/57G. Waldemarson

Data Storage

accessor

buffer view

buffer

texture

image

11/57

20
24

-0
8-
16 glTF

Data Storage

And lastly, this part define the data acquisition model. And, as you can imagine from the topic
of this talk, this part is pretty important for us!



Buffers, Views and Accessors

Accessors
• What to access
• How to access
• BufferView

Texture
• Image

Image
• BufferView
• URI

BufferView
• byteStride
• byteLength
• byteOffset

Buffer
• byteLength
• URI

12/57G. Waldemarson

Buffers, Views and Accessors

Accessors
• What to access
• How to access
• BufferView

Texture
• Image

Image
• BufferView
• URI

BufferView
• byteStride
• byteLength
• byteOffset

Buffer
• byteLength
• URI

12/57

20
24

-0
8-
16 glTF

Buffers, Views and Accessors

So, most of the work we want to do in this talk really just boils down to using some data that
you already have, and packing it into something that glTF understands. And, beyond using JSON
primitives, these are our basic building blocks to do so, which we can break down into a few
different levels:

At the lowest level we find the Buffer, which really is just a source of unstructured bytes. Just
above that is a BufferView, which really is just a bit of metadata on how to index a Buffer using
an offset, stride and length.

Above that we’ll find the Accessors, Textures and Images which describes exactly what kind of
data we want to access and how it should be accessed through e.g., a BufferView.



Buffers, Views and Accessors
Inside Blender…

• Accessor⇒ Accessor
• Texture⇒ Texture
• Image⇒ Image

• BufferView⇒ BinaryData
• Buffer⇒ BinaryData
• Image⇒ ImageData

13/57

https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html
https://www.khronos.org/files/gltf20-reference-guide.pdf

G. Waldemarson

Buffers, Views and Accessors
Inside Blender…

• Accessor⇒ Accessor
• Texture⇒ Texture
• Image⇒ Image

• BufferView⇒ BinaryData
• Buffer⇒ BinaryData
• Image⇒ ImageData

13/57

https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html
https://www.khronos.org/files/gltf20-reference-guide.pdf

20
24

-0
8-
16 glTF

Buffers, Views and Accessors

So what becomes of all of this when it reaches Blender?

This is where the glTF importer and exporter addon comes in. And the way it is structured in a
really straight-forward way: Each object that exist in glTF has a corresponding class associated
with it. And any entity that was cross-referenced with indices gets resolved into a proper object-
reference, all to make it a lot easier to handle the data.

So thanks to Julien and the other contributors of the glTF addon, we can actually ignore almost
all of these low level details as they are actually handled automatically for us. Even the really low
level buffer and image objects gets converted the so called BinaryData and ImageData classes to
make it easier to manage this type of data, something we will get into a bit more detail of a bit
later.

So, if you are working with the format, keeping the glTF specification and object reference
sheet (that I have linked down here) around is very helpful to figure out exactly what data each
object actually contains.

In summary: These classes acts as both a data-container (if you need the data) and a wrapper
for reading and writing to the various types of glTF files.

https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html
https://www.khronos.org/files/gltf20-reference-guide.pdf
https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html
https://www.khronos.org/files/gltf20-reference-guide.pdf


The Blender glTF I/O Addon
tinygltf

template<class T>
std::vector<T> gltf_access(const tinygltf::Model &gltf,

const tinygltf::Accessor &acc)
{

auto &bv = gltf.bufferViews[acc.bufferView];
auto &b = gltf.buffers[bv.buffer];
// ~100 lines to extract the data.

}

14/57G. Waldemarson

The Blender glTF I/O Addon
tinygltf

template<class T>
std::vector<T> gltf_access(const tinygltf::Model &gltf,

const tinygltf::Accessor &acc)
{

auto &bv = gltf.bufferViews[acc.bufferView];
auto &b = gltf.buffers[bv.buffer];
// ~100 lines to extract the data.

}

14/57

20
24

-0
8-
16 glTF

The Blender glTF I/O Addon

However, if you are on the receiving end of the glTF-file, you may actually care about those
details. E.g., if you are exporting files from Blender using glTF, and then using the tinygltf
C++ library to load the file. In that case you only get a direct struct-based representation of
the glTF-file: It is up to you to actually read back the data if you want it, including the index-
resolution I mentioned earlier. Which, as in this truncated snippet, can require quite a bit of
extra code; which in my case, takes about another 100 lines of code.

(But, inside Blender most of this is managed for us, however, in our engines, or in my case, my
research renderer, we usually don’t have Blender directly available. For those cases, I recommend
using tools such as tinygltf to do most of the heavy lifting for us.)

(While bare-bone, it does an excellent job of making the glTF data available to C++ applications.)



The Blender glTF I/O Addon
Blender

import io_scene_gltf2.io.exp.gltf2_io_binary_data as exp
import io_scene_gltf2.io.imp.gltf2_io_binary_data as imp
indices = [0, 1, 2]
binary_data = exp.BinaryData(bytes(indices))
decoded = imp.BinaryData.decode_accessor_internal(binary_data)

15/57G. Waldemarson

The Blender glTF I/O Addon
Blender

import io_scene_gltf2.io.exp.gltf2_io_binary_data as exp
import io_scene_gltf2.io.imp.gltf2_io_binary_data as imp
indices = [0, 1, 2]
binary_data = exp.BinaryData(bytes(indices))
decoded = imp.BinaryData.decode_accessor_internal(binary_data)

15/57

20
24

-0
8-
16 glTF

The Blender glTF I/O Addon

And if we compare this with the facilities available in Blender through the glTF addon, every-
thing is just much nicer in comparison:

• To write a buffer (and at the same time, create a BufferView), we simply construct a
BinaryData class.

• And to read that data back, we simply call a static method in the same class called
decode_accessor_internal.

But, depending on our contexts we don’t always have it this easy!



The Extension Mechanism

{
"extensionsUsed":[

"KHR_lights_punctual",
"KHR_materials_transmission"

],
"extensionsRequired":[

"KHR_lights_punctual"
],
"extensions":{

"KHR_lights_punctual":{
"lights":[]

}
}

}

16/57G. Waldemarson

The Extension Mechanism

{
"extensionsUsed":[

"KHR_lights_punctual",
"KHR_materials_transmission"

],
"extensionsRequired":[

"KHR_lights_punctual"
],
"extensions":{

"KHR_lights_punctual":{
"lights":[]

}
}

}

16/57

20
24

-0
8-
16 glTF

The Extension Mechanism

The final thing I want to mention about glTF is about the Extensionmechanism. As I mentioned
earlier, the .gltf file is really just a kind of JSON file. As such, we can technically add whatever
data wewant to it. Obviously, the specification requires some stuff, but it also gives us an official
way for adding new attributes in a structured fashion.

This is done by adding a new key-object pair under a special extension-object. The key in this case
is the vendor prefix: Basically the letters KHR, for Khronos in this case, followed by a descriptive
title. In this case, lights_punctual which allows us to embed various point-like light-source
in the scene. For this talk though, everything is obviously assumed to be custom, so where
applicable I will just use the prefix NONE.

And these extensions essentially come in two flavors: required and optional. As the names
suggest, if an extension is required, a compliant glTF-parser/renderer should abort if it does
not support the extension. E.g., Meshes that are compressed with an unsupported algorithm,
naturally cannot be handled.

Optional ones though could be things suchmetadata containers, or optional rendering features.
I.e., if the client does not support it, it should still be able to use all other data, although ren-
derings may be different from what the author intended.

Extensions that are used are then listed in the top of the JSON file, like in these examples here.



The Extension Mechanism

"nodes": [
{

"extensions":{
"KHR_lights_punctual":{

"light":0
}

},
"name":"Point",
"rotation":[],
"translation":[]

},
]

17/57

https://github.com/KhronosGroup/glTF/tree/main/extensions

G. Waldemarson

The Extension Mechanism

"nodes": [
{

"extensions":{
"KHR_lights_punctual":{

"light":0
}

},
"name":"Point",
"rotation":[],
"translation":[]

},
]

17/57

https://github.com/KhronosGroup/glTF/tree/main/extensions

20
24

-0
8-
16 glTF

The Extension Mechanism

Then, depending on the actual extension itself, more extension-keys can be found elsewhere
in the file, such as this extension here which defines a point-light attached to the scene-graph.
Where and how these keys are used is entirely up to the extension itself.

Extensions are sometimes useful for many people out there though, as such they are occasionally
standardized, and a collections of these can be found here:

• https://github.com/KhronosGroup/glTF/tree/main/extensions

Creating of ’official’ extensions in this way is well beyond the scope of this talk, but this links
provides details for the interested out there.

https://github.com/KhronosGroup/glTF/tree/main/extensions
https://github.com/KhronosGroup/glTF/tree/main/extensions
https://github.com/KhronosGroup/glTF/tree/main/extensions


Texture Watermarking
A First Use-Case

⇒

18/57G. Waldemarson

Texture Watermarking
A First Use-Case

⇒

18/57

20
24

-0
8-
16 Watermarking

Texture Watermarking

And then we finally we get to the actual Plugins themselves. A quick disclaimer before go on
though: I do not claim to be a good Blender plugin writer. In fact, I’m pretty sure there are much
better ones in this very room.

But with that, I want to present a first example of these tools in action: A plugin that watermarks
all textures while exporting.

This is admittedly a bit of a facetious use-case, but it is a good, simple example to show off how
to create a glTF plugin.

So with that, let us go over the basics that you need to create a new plugin for the glTF exporter.



Extension Plugins – 2
Panel

19/57G. Waldemarson

Extension Plugins – 2
Panel

19/57

20
24

-0
8-
16 Watermarking

Extension Plugins – 2

So, let us start with a clear goal for this plugin:

• We know what we want the watermarker to do, we already have a nice visual cue for it
up here: We want this to happen to all images we export.

• But obviously, we want to also be able to control the process in some fashion.

• To that end, we want to add a panel to the GLTF exporter that looks something like this:

– Basically, we want the ability to enable or disable the plugin, and,
– Select what image to use as a watermark.



Extension Plugins – 2
bl_info

bl_info = {
"name": "glTF Export Watermarker Extension",
"category": "Import-Export",
"version": (1, 0, 0),
"blender": (3, 0, 0),
"location": "File > Export > glTF 2.0",
"description": "Watermark any exported image texture.",
"author": "Gustaf Waldemarson",

}

20/57

https://wiki.blender.org/wiki/Process/Addons/Guidelines/metainfo

G. Waldemarson

Extension Plugins – 2
bl_info

bl_info = {
"name": "glTF Export Watermarker Extension",
"category": "Import-Export",
"version": (1, 0, 0),
"blender": (3, 0, 0),
"location": "File > Export > glTF 2.0",
"description": "Watermark any exported image texture.",
"author": "Gustaf Waldemarson",

}

20/57

https://wiki.blender.org/wiki/Process/Addons/Guidelines/metainfo

20
24

-0
8-
16 Watermarking

Extension Plugins – 2

But let us start from the top: First we need a special variable called bl_info that Blender can
use to pick up metadata about the plugin, such as a name, description, current version, which
Blender versions it supports and so on.

This is not unique to our type of plugin though, but is really used by all Blender addons. And
after a bit of digging, I even found a link to the specification for this variable, so here you can
see all options that you can (or should) add to it.

https://wiki.blender.org/wiki/Process/Addons/Guidelines/metainfo
https://wiki.blender.org/wiki/Process/Addons/Guidelines/metainfo


Extension Plugins – 3
Properties

class WatermarkingExtensionProperties(bpy.types.PropertyGroup):

enabled: bpy.props.BoolProperty(
name="glTF Export Watermarker Extension",

)
watermark: bpy.props.StringProperty(

name="Watermark image",
)

21/57G. Waldemarson

Extension Plugins – 3
Properties

class WatermarkingExtensionProperties(bpy.types.PropertyGroup):

enabled: bpy.props.BoolProperty(
name="glTF Export Watermarker Extension",

)
watermark: bpy.props.StringProperty(

name="Watermark image",
)

21/57

20
24

-0
8-
16 Watermarking

Extension Plugins – 3

Next we get to the property class that we use to contains these control options, in short, we
need:

• A boolean property to enable or disable the plugin.

• A string to identify the image we want to use as a watermark.

This property class will then help also help us to create the actual buttons to change these op-
tions, which is exactly what we’ll look into next…



Extension Plugins – 4

class GLTF_PT_UserExtensionWatermarkingPanel(bpy.types.Panel):
bl_space_type = 'FILE_BROWSER'
bl_region_type = 'TOOL_PROPS'
bl_label = 'Enabled'
bl_parent_id = 'GLTF_PT_export_user_extensions'
bl_options = {'DEFAULT_CLOSED'}

22/57G. Waldemarson

Extension Plugins – 4

class GLTF_PT_UserExtensionWatermarkingPanel(bpy.types.Panel):
bl_space_type = 'FILE_BROWSER'
bl_region_type = 'TOOL_PROPS'
bl_label = 'Enabled'
bl_parent_id = 'GLTF_PT_export_user_extensions'
bl_options = {'DEFAULT_CLOSED'}

22/57

20
24

-0
8-
16 Watermarking

Extension Plugins – 4

And to do that, we (typically) need another class to contain the look-and-feel of the controls.

This one uses a slew of variables and methods to define how to create buttons that set the
properties, even where they should be created, and so forth. Of particular interest in this case
is the bl_parent_id variable:

Here, it is set to the special key (GLTF_PT_export_user_extension) that signals that we are a child
of the main glTF export panel.

Obviously, it could change this and place these options elsewhere, but this is a logical place for
it: Right next to the other glTF export options.



Extension Plugins – 5

def draw_header(self, context):
props = bpy.context.scene.WatermarkingExtensionProperties
self.layout.prop(props, 'enabled')

def draw(self, context):
layout = self.layout
layout.use_property_split = True
layout.use_property_decorate = False
props = bpy.context.scene.WatermarkingExtensionProperties
layout.active = props.enabled
box = layout.box()
box.label(text="NONE_watermark")
layout.prop(props, "watermark", text="Watermark Image")

23/57G. Waldemarson

Extension Plugins – 5

def draw_header(self, context):
props = bpy.context.scene.WatermarkingExtensionProperties
self.layout.prop(props, 'enabled')

def draw(self, context):
layout = self.layout
layout.use_property_split = True
layout.use_property_decorate = False
props = bpy.context.scene.WatermarkingExtensionProperties
layout.active = props.enabled
box = layout.box()
box.label(text="NONE_watermark")
layout.prop(props, "watermark", text="Watermark Image")

23/57

20
24

-0
8-
16 Watermarking

Extension Plugins – 5

Then, to actually create the buttons and allow them to set our options, we do a few things:

1. The draw method tells us how to well, draw our panel, hence, we should change the
layout here to including any labels or decorators for the buttons that we want.

2. Then, to create buttons and connect it with our properties, we call the prop method here
the property class in question and the key that identifies the option, such as the
watermark in my case here.

3. And that is pretty much it: If done correctly, the property and panel classes will now
cooperate to provide a simple menu for setting these values.

I should also note that it is strongly recommended that these two classes have unique names,
otherwise, you can end up in a situation where only the last registered glTF plugin shows up in
the menu.



Extension Plugins – 6
Registration

def register():
bpy.utils.register_class(WatermarkingExtensionProperties)
prop = bpy.props.PointerProperty(type=WatermarkingExtensionProperties)
bpy.types.Scene.WatermarkingExtensionProperties = prop

def register_panel():
try:

bpy.utils.register_class(GLTF_PT_UserExtensionWatermarkingPanel)
except Exception:

pass
return unregister_panel

24/57G. Waldemarson

Extension Plugins – 6
Registration

def register():
bpy.utils.register_class(WatermarkingExtensionProperties)
prop = bpy.props.PointerProperty(type=WatermarkingExtensionProperties)
bpy.types.Scene.WatermarkingExtensionProperties = prop

def register_panel():
try:

bpy.utils.register_class(GLTF_PT_UserExtensionWatermarkingPanel)
except Exception:

pass
return unregister_panel

24/57

20
24

-0
8-
16 Watermarking

Extension Plugins – 6

Next, we need to actually register these classes with Blender and store them somewhere in the
scene context such that we can actually modify or retrieve them at a later time.

(Here we do run into a minor caveat: We must make sure to only register the panel once.

However, our plugin depend on themain glTF addon, hence, if that addon is not actually loaded,
it we will fail to register the panel. While crude, the simplest way to handle this is simply to use
try-except guards, even if these probably are a bit heavy for us.)



Extension Plugins – 7
Un-Registration

def unregister_panel():
try:

bpy.utils.unregister_class(GLTF_PT_UserExtensionWatermarkingPanel)
except Exception:

pass

def unregister():
unregister_panel()
bpy.utils.unregister_class(WatermarkingExtensionProperties)
del bpy.types.Scene.WatermarkingExtensionProperties

25/57G. Waldemarson

Extension Plugins – 7
Un-Registration

def unregister_panel():
try:

bpy.utils.unregister_class(GLTF_PT_UserExtensionWatermarkingPanel)
except Exception:

pass

def unregister():
unregister_panel()
bpy.utils.unregister_class(WatermarkingExtensionProperties)
del bpy.types.Scene.WatermarkingExtensionProperties

25/57

20
24

-0
8-
16 Watermarking

Extension Plugins – 7

And if we register the classes, we should probably also un-register them as well, with the same
caveat as before.



Extension Plugins – 8
The Exporter Class

class glTF2ExportUserExtension:
def __init__(self):

from io_scene_gltf2.io.com.gltf2_io_extensions import Extension
self.props = bpy.context.scene.WatermarkingExtensionProperties

def gather_image_hook(self,
gltf2_image,
blender_shader_sockets,
export_settings):

watermark(gltf2_image)

26/57G. Waldemarson

Extension Plugins – 8
The Exporter Class

class glTF2ExportUserExtension:
def __init__(self):

from io_scene_gltf2.io.com.gltf2_io_extensions import Extension
self.props = bpy.context.scene.WatermarkingExtensionProperties

def gather_image_hook(self,
gltf2_image,
blender_shader_sockets,
export_settings):

watermark(gltf2_image)

26/57

20
24

-0
8-
16 Watermarking

Extension Plugins – 8

And now we finally get to the class that defines these glTF plugins. In your script, you should
define a class with the exact name glTF2ExportUserExtension and add methods to it that cor-
responds to what we want to customize.

So in our case, we want to customize all images. Something that is done using the appropriately
named gather_image_hook, wherewe simply receive the gltf_image, and the Blender equivalent.

(Again, we run into the small issue of dependencies: To avoid possible import errors when load-
ing the plugins, we should place our imports such that they are only called when we know that
the primary addon is present. Hence we have these import statements in somewhat funky loca-
tions.)

(Tentative, not sure I have time to go into this.)

(And this is essentially the minimum that a glTF plugin needs to contain, however, as we will get
into in a bit there are a few additions that I recommend that you add to make the code more
robust, especially if you are targeting multiple Blender versions.)

(Alternatively, you can create a list called glTF2ExportUserExtensions (notice the s), which are
all the classes you want to represent your plugins.)



Extension Plugins – 9
Watermarking

def watermark(self, gltf_image):
img = img2numpy(gltf_image)
img = watermark_internal(img, mark)
data = img2memory(gltf_image.mime_type, img)
mime = gltf_image.mime_type
if gltf_image.uri:

import io_scene_gltf2.io.exp.gltf2_io_image_data as gltf
name = gltf_image.uri.name
gltf_image.uri = gltf.ImageData(data, mime, name)

else:
import io_scene_gltf2.io.exp.gltf2_io_binary_data as gltf
gltf_image.buffer_view = gltf.BinaryData(data)

27/57G. Waldemarson

Extension Plugins – 9
Watermarking

def watermark(self, gltf_image):
img = img2numpy(gltf_image)
img = watermark_internal(img, mark)
data = img2memory(gltf_image.mime_type, img)
mime = gltf_image.mime_type
if gltf_image.uri:

import io_scene_gltf2.io.exp.gltf2_io_image_data as gltf
name = gltf_image.uri.name
gltf_image.uri = gltf.ImageData(data, mime, name)

else:
import io_scene_gltf2.io.exp.gltf2_io_binary_data as gltf
gltf_image.buffer_view = gltf.BinaryData(data)

27/57

20
24

-0
8-
16 Watermarking

Extension Plugins – 9

And for completeness, the function that performs the actual watermarking looks something like
this:

1. First, we basically convert the encoded image to something we can use (which is a numpy
array in this case).

2. Then, we apply the watermark,

3. And finally, we convert the image back to a binary format again.

We do have to be slightly careful though: It is the user that decides what format the image is
stored in depending on the embedded or separable time from before. Hence, a good plugin
obviously should respect that choice, even if we could override it.

Thankfully, this is pretty easy to handle: We simply check the uri attribute of the original image,
and then use either the BinaryData (for embedded formats) or ImageData class (for the separable
one).



Extension Plugins – 10
The Extension Class

def gather_node_hook(self, gltf_obj, bl_object, export_settings):
key = extension_name
if self.properties.enabled:

if gltf_obj.extensions is None:
gltf_obj.extensions = {}

gltf_obj.extensions[key] = self.Extension(
name=key,
extension={"float": self.properties.float_property},
required=False,

)

28/57G. Waldemarson

Extension Plugins – 10
The Extension Class

def gather_node_hook(self, gltf_obj, bl_object, export_settings):
key = extension_name
if self.properties.enabled:

if gltf_obj.extensions is None:
gltf_obj.extensions = {}

gltf_obj.extensions[key] = self.Extension(
name=key,
extension={"float": self.properties.float_property},
required=False,

)

28/57

20
24

-0
8-
16 Watermarking

Extension Plugins – 10

Lastly, I want to say a few words about the so-called Extension class, which I didn’t actually
have to use in this example. This is a special class used to signal that we are adding extension
data of some kind so that the exporter can add it to the list of used Extensions. As I showed
before though, we can place this class pretty much anywhere, such as in the node hierarchy in
this example.

It can also contain anything that can become valid JSON data. And this includes any other glTF
classes, even the special BinaryData classes I showed earlier.

(Which in those cases, the data is packed into Buffers and these links are replaced with Buffer-
Views.)



Installing and Enabling Plugins

29/57G. Waldemarson

Installing and Enabling Plugins

29/57

20
24

-0
8-
16 Watermarking

Installing and Enabling Plugins

And now is a good point for this little reminder for completeness’s sake: I typically install a
new by dropping the file into the addon directory, but forget to enable it, and then sit around
scratching my head for a bit wondering where all my stuff has gone.

So this is easily fixed done by opening the Edit-menu, and going to Preferences dialogue.



Installing and Enabling Plugins

30/57G. Waldemarson

Installing and Enabling Plugins

30/57

20
24

-0
8-
16 Watermarking

Installing and Enabling Plugins

Here, we open the Add-ons section. Then I recommend enabling all sections and searching for
“gltf”. Then simply click enable to make the add-on usable.

I’m sure there’s a way of doing this automatically, but it is a good thing to be able to find these
settings, and you only have to do this once anyways.



Installing and Enabling Plugins

31/57G. Waldemarson

Installing and Enabling Plugins

31/57

20
24

-0
8-
16 Watermarking

Installing and Enabling Plugins

And with all that, if you have done everything correctly, you should have a new entry in the glTF
export panel with your options.



Hooks

32/57G. Waldemarson

Hooks

32/57

20
24

-0
8-
16 Customization Methods / Hooks



Available Customization Methods

Functions

gather_animation_hook(...)
gather_animation_channel_hook(...)
gather_animation_channel_target_hook(...)
gather_animation_sampler_hook(...)
gather_asset_hook(...)
gather_camera_hook(...)
gather_gltf_extensions_hook(...)
gather_image_hook(...)
gather_joint_hook(...)
gather_material_hook(...)
gather_material_pbr_metallic_roughness_hook(...)
gather_material_unlit_hook(...)
gather_mesh_hook(...)
gather_node_hook(...)
gather_node_name_hook(...)
gather_sampler_hook(...)
# ...
gather_scene_hook(...)

33/57G. Waldemarson

Available Customization Methods

Functions

gather_animation_hook(...)
gather_animation_channel_hook(...)
gather_animation_channel_target_hook(...)
gather_animation_sampler_hook(...)
gather_asset_hook(...)
gather_camera_hook(...)
gather_gltf_extensions_hook(...)
gather_image_hook(...)
gather_joint_hook(...)
gather_material_hook(...)
gather_material_pbr_metallic_roughness_hook(...)
gather_material_unlit_hook(...)
gather_mesh_hook(...)
gather_node_hook(...)
gather_node_name_hook(...)
gather_sampler_hook(...)
# ...
gather_scene_hook(...)

33/57

20
24

-0
8-
16 Customization Methods / Hooks

Available Customization Methods

Asmost of you probably know, Blender has loads of primitives, and glTF supports many of these.
And this support is exposed with a long list of methods as you can see here, all of which you
can override. But in short: Each of these map to one of the objects that you can find in the
glTF-world.

(And while I have worked with a good chunk of these types, I obviously cannot go into detail
on all of these.)



Available Customization Methods
My Overrides

Functions

gather_image_hook(...)
gather_mesh_hook(...)
gather_primitive_hook(...)

34/57G. Waldemarson

Available Customization Methods
My Overrides

Functions

gather_image_hook(...)
gather_mesh_hook(...)
gather_primitive_hook(...)

34/57

20
24

-0
8-
16 Customization Methods / Hooks

Available Customization Methods

So, beyond the image hook we looked at for the watermarking plugin, We will only really talk
about a few more method out of all of these: Namely the mesh and primitive-hooks. While this
is pretty restrictive, I think that just the mesh alone is good example, such that it is pretty easy
to infer what could be done in any of the other hooks.



Available Customization Methods
General Structure

Functions

gather_mesh_hook(self,
gltf2_mesh,
blender_mesh,
blender_object,
vertex_groups,
modifiers,
materials,
export_settings)

35/57G. Waldemarson

Available Customization Methods
General Structure

Functions

gather_mesh_hook(self,
gltf2_mesh,
blender_mesh,
blender_object,
vertex_groups,
modifiers,
materials,
export_settings)

35/57

20
24

-0
8-
16 Customization Methods / Hooks

Available Customization Methods

In general, I try to think of each of these methods like this: It’s a method that receives both the
Blender and glTF versions of the object that we are exporting or importing.

So, in the case of a mesh: We get both the Blender and glTF version, but also which object is
belongs to, the vertex groups, modifiers and materials.

Finally, all methods also get this last argument which is a dictionary that contains global export
options: Such as the output directory where any generated file should be placed, if we are
exporting in JSON or binary mode, etc.



Micromaps – VK_EXT_opacity_micromap

36/57G. Waldemarson

Micromaps – VK_EXT_opacity_micromap

36/57

20
24

-0
8-
16 Customization Methods / Hooks

Micromaps – VK_EXT_opacity_micromap

This moves us to my actual use case: As I mentioned, I use glTF as my primary 3D model format
for my research renderer, as such, I often investigate various new techniques or types of data.
However, creating new formats for each new type of data is really annoying. As such, I eventually
realized that the glTF extension mechanism could be used to simplify this matter.

As such, allow me to present the thing that I have been working on: A relatively new type of
rendering primitive in Vulkan® and DirectX® that is known as a Micromap.

Basically, we want to somehow generate this thing that you can see on the right.



Micromaps – VK_EXT_opacity_micromap

37/57G. Waldemarson

Micromaps – VK_EXT_opacity_micromap

37/57

20
24

-0
8-
16 Micromaps

Micromaps – VK_EXT_opacity_micromap

And once you apply these to a scene, such as our traditional Sponza scene, we can get an effect
that looks something like this inside a ray-tracing pipeline.

And this is entirely without using any kind of alpha-mapping: The micromaps have effectively
made our geometry more granular almost for free!



Micromaps – VK_EXT_opacity_micromap

38/57G. Waldemarson

Micromaps – VK_EXT_opacity_micromap

38/57

20
24

-0
8-
16 Micromaps

Micromaps – VK_EXT_opacity_micromap

Without digging into too many of the details, (And I mean, it is a Vulkan® extension, there are
loads of details to go around), we can still pretty easily describe it as follows:

1. Take any triangle,

2. Split each edge at their midpoint, forming 4 new, virtual sub-triangles,

3. Repeat this n times,

4. Next, associate a value with each of the sub-triangles,

5. Finally, linearize these values with a special space-filling curve, giving us an array of
values: I.e., our micromap.

In short: You can view the micromap as very specialized per-triangle texture. And I want to be
able to generate some realistic data for it.



Opacity Micromaps

0 Transparent

1 Opaque

2 Unknown
(Transparent)

3 Unknown (Opaque)

39/57G. Waldemarson

Opacity Micromaps

0 Transparent

1 Opaque

2 Unknown
(Transparent)

3 Unknown (Opaque)

39/57

20
24

-0
8-
16 Micromaps

Opacity Micromaps

Now, in Vulkan®specifically, there is currently only one official type of Micromap available:
Namely the “Opacity Micromap”, that is, a map that stores opacity values at each subtriangle,
and only very specialized ones at that:

Transparent (0) Sub-triangle is 100% transparent,

Opaque (1) It is 100% opaque,

Unknown (2, 3) Unknown opacity with escape hatches for faster processing in some cases.

Naturally, this is a specialized type of opacity, and in fact, is targeted at improving the per-
formance of hardware accelerated ray-tracing applications by reducing the number of Any-Hit
shader calls, but that is a discussion for a different time.



Opacity Micromaps

⇒
0b10100110 10100110 10100110 10100110

40/57G. Waldemarson

Opacity Micromaps

⇒
0b10100110 10100110 10100110 10100110

40/57

20
24

-0
8-
16 Micromaps

Opacity Micromaps

And while this looks like we are storing an array of values, the kicker is though that each of
these elements only need two bits each. In fact, there is another mode where we only use a
single bit per value. Hence, these micromaps can be extremely compact compared to a typical
alpha-map.



Micromaps – VK_EXT_opacity_micromap

uv2index(u, v, level)
7

(0.28,0.4)

41/57G. Waldemarson

Micromaps – VK_EXT_opacity_micromap

uv2index(u, v, level)
7

(0.28,0.4)

41/57

20
24

-0
8-
16 Micromaps

Micromaps – VK_EXT_opacity_micromap

And for completeness: At rendering-time, we have a very efficient algorithm for going from
barycentric coordinates to a micromap-index and consequently the micromap-value stored in
that specific sub-triangle.



Opacity Micromaps Exporter

for triangle in scene:
if tri.alpha_map:

generate_micromaps(tri.alpha_map)

42/57G. Waldemarson

Opacity Micromaps Exporter

for triangle in scene:
if tri.alpha_map:

generate_micromaps(tri.alpha_map)

42/57

20
24

-0
8-
16 Micromaps

Opacity Micromaps Exporter

So, in my case, I want to create a plugin that can generate these micromaps and embed them
as a part of the glTF-file. And, we also want them to be realistic, that is, we want our exporter
to find any alpha-texture associated with each triangle and generate a “representative” opacity
micromap for it.

So, what we want to do is the following:

• For each triangle:

• Add micromaps if it has an alpha texture.



Opacity Micromaps Exporter

"meshes":[
{

"name":"Plane.001",
"primitives":[

{
"extensions":{

"NONE_opacity_micromap":{
"level":2,
"mode":"4state",
"micromaps":[

"0b00101010000000001010101010101000",
"0b00000000100010101010100000100000"

]
}

}

43/57G. Waldemarson

Opacity Micromaps Exporter

"meshes":[
{

"name":"Plane.001",
"primitives":[

{
"extensions":{

"NONE_opacity_micromap":{
"level":2,
"mode":"4state",
"micromaps":[

"0b00101010000000001010101010101000",
"0b00000000100010101010100000100000"

]
}

}

43/57

20
24

-0
8-
16 Micromaps

Opacity Micromaps Exporter

And just so we are all clear on exactly what we want in the end:

We want to be able to generate glTF-file that contains extension objects that look something
like this:

• That is, each primitive (i.e., list of triangles) now have a list of micromaps associated with
it, with any interesting metadata (such as the subdivision level).

(This is also one of the reasons we would like to generate these during the export phase: The
micromaps needs to be matched with the correct vertex indices, and the Blender indices does
not necessarily match the one used by glTF.)



Opacity Micromaps Exporter

mesh

primitive

linespoints triangles ...

+

+ + + +

material

44/57G. Waldemarson

Opacity Micromaps Exporter

mesh

primitive

linespoints triangles ...

+

+ + + +

material

44/57

20
24

-0
8-
16 Micromaps

Opacity Micromaps Exporter

So on the face of it, it looks like we should be able to just add a customization method for
primitives and just process each of them as we export.

Unfortunately for us, orme at least, glTF structures primitives something like this. Of particular
note is that materials are attached to the mesh rather than the primitive. So we actually need
to move up a bit and customize the mesh-exporter instead.



Opacity Micromaps Exporter
Control Attributes

45/57G. Waldemarson

Opacity Micromaps Exporter
Control Attributes

45/57

20
24

-0
8-
16 Micromaps

Opacity Micromaps Exporter

Another good reason for moving up to the mesh level is that we can more easily attach some
custom control attributes on each mesh, that we can use to control the micromap generation
process on a per-mesh-basis.



Opacity Micromaps Exporter

for mesh in gltf_scene:
for primitive in mesh:

alpha_map = mesh.material.baseColorTexture
if alpha_map:

indices = gltf_access(primitive.indices)
tex_coords = gltf_access(primitive.tex_coords)
primitive.extension = micromaps_extension(...)

46/57G. Waldemarson

Opacity Micromaps Exporter

for mesh in gltf_scene:
for primitive in mesh:

alpha_map = mesh.material.baseColorTexture
if alpha_map:

indices = gltf_access(primitive.indices)
tex_coords = gltf_access(primitive.tex_coords)
primitive.extension = micromaps_extension(...)

46/57

20
24

-0
8-
16 Micromaps

Opacity Micromaps Exporter

Thus, to adapt our loop to the glTF world, we will do roughly the following:

• Each time we export a mesh:

– Check if the triangle contains alpha-textures. If so:
1. Extract the glTF triangles (indices, uvs, materials and textures).
2. Use these to map all triangles to the alpha texture(s).
3. Generate the micromaps from that mapping.
4. Store them in the .gltf-file.

Now this seems pretty easy on the face of it: And it sort of is when you have dug deeply enough
into the glTF model:



Opacity Micromaps Exporter

def gather_mesh_hook(gltf_mesh, bl_mesh, ...):
for primitive in gltf_mesh:

alpha_map = gltf_mesh.material.baseColorTexture
if alpha_map:

indices = gltf_access(primitive.indices)
tex_coords = gltf_access(primitive.tex_coords)
primitive.extension = micromaps_extension(...)

47/57G. Waldemarson

Opacity Micromaps Exporter

def gather_mesh_hook(gltf_mesh, bl_mesh, ...):
for primitive in gltf_mesh:

alpha_map = gltf_mesh.material.baseColorTexture
if alpha_map:

indices = gltf_access(primitive.indices)
tex_coords = gltf_access(primitive.tex_coords)
primitive.extension = micromaps_extension(...)

47/57

20
24

-0
8-
16 Micromaps

Opacity Micromaps Exporter

All we had to do, was replace the top of the loop with the gather_mesh_hook(), and we’re
basically off to the races.

There are a number of caveats here that make this a bit more challenging in practice.

• Each time a micromap is divided, we quadruple the number of sub-triangle.

– That is 4n ·# primitives. That’s a lot of triangles.
– But each of them are computationally independent

Clearly, we want to parallelize this as much as possible, which in Pythons case means bringing
in multiprocessing, and probably also some way of profiling the code to find any problematic
snippets.



Multiprocessing

• No locals
• Avoid nested parallelism
• (Most) Arguments are copied
• Appropriate chunk-sizes

for work_item in chunk:
run_task(work_item)

chk_sz = max(1, nitems // ncore)

48/57G. Waldemarson

Multiprocessing

• No locals
• Avoid nested parallelism
• (Most) Arguments are copied
• Appropriate chunk-sizes

for work_item in chunk:
run_task(work_item)

chk_sz = max(1, nitems // ncore)

48/57

20
24

-0
8-
16 Micromaps

Multiprocessing

And Multiprocessing in itself is a complicated topic, with numerous corner cases, as such I won’t
really go into it. But I do want to give some general advice if you also end up in this situation:

• Remember that local variables and functions are typically not available,

• Avoid nested parallelism. Try to flatten any nested structures and provide those as
arguments instead.

• Remember that practically all data we send to the processes has to be copied, which could
be expensive if we are using textures as arguments.

• Set appropriate chunk-sizes: The Python default of 1 is often inadequate. Try to divide
your tasks evenly between your cores!



Profiling Plugins

glTF2_pre_export_callback(export_settings)
glTF2_post_export_callback(export_settings)

49/57G. Waldemarson

Profiling Plugins

glTF2_pre_export_callback(export_settings)
glTF2_post_export_callback(export_settings)

49/57

20
24

-0
8-
16 Micromaps

Profiling Plugins

And profile your application. Python has tools that these tasks easier, so try to use them when
possible! And the glTF addon has two more special methods that we can use help this out even
further:

• glTF2_pre_export_callback(export_settings)

• glTF2_post_export_callback(export_settings)

As their name suggests, these functions run before and after the export, as such they are a good
place to start or stop the profiling process. Or, for printing out the actual profiling results in the
end.



Storing the Micromaps
JSON Storage

mm_strs = [str(mm) for mm in micromaps]
ext = {

"level": micromaps.level,
"mode": micromaps.mode,
"format": "linear",
"micromaps": mm_strs,

}
return Extension(extension=ext, ...)

50/57G. Waldemarson

Storing the Micromaps
JSON Storage

mm_strs = [str(mm) for mm in micromaps]
ext = {

"level": micromaps.level,
"mode": micromaps.mode,
"format": "linear",
"micromaps": mm_strs,

}
return Extension(extension=ext, ...)

50/57

20
24

-0
8-
16 Micromaps

Storing the Micromaps

But moving back to the microamps:

Obviously, I didn’t learn everything about glTF (and micromaps) at once, so I actually ended
up with more than one “format” to store them, hence I actually wanted to store this data in
different ways for different use-cases:

• Small micromaps used for testing purposes is most easily manged in a string.
– This makes it easier to quickly (and manually) change the micromap after

exporting it.
• Large micromaps are probably not modified in such a way, so for them, we may as well

store them using the existing glTF buffer-system.

(Here is one caveat that is worth mentioning: While glTF is working, the entire JSON portion is
actually kept in memory, so if you store too much in there, we can actually run out of memory
during the export.

As an example, I once attempted to export a gigantic scene with large micromaps in the string
format. And while everything seemed to work in the beginning, I was left scratching my head
for a while until I realized what was happening.)



Storing the Micromaps
Buffer Storage

mm_bytes = pack_micromaps(micromaps)
ext = {

"level": level,
"mode": mode,
"format": "buffer",
"micromaps": BinaryData(mm_bytes),

}
return Extension(extension=ext, ...)

51/57G. Waldemarson

Storing the Micromaps
Buffer Storage

mm_bytes = pack_micromaps(micromaps)
ext = {

"level": level,
"mode": mode,
"format": "buffer",
"micromaps": BinaryData(mm_bytes),

}
return Extension(extension=ext, ...)

51/57

20
24

-0
8-
16 Micromaps

Storing the Micromaps

So, in the previous example we only stored the micromaps as strings in the JSON format, which
of course, is terribly inefficient, effectively using eight times as much storage as necessary.

Instead, the better thing to do in this case is to use the existing glTF buffer system, which we
can easily do by just using the BinaryData class from before:

We just convert themicromap data directly to flat buffer of bytes and give that to the BinaryData
class, then glTF will handle the rest.



Displacement Micromaps / Other Micromaps

A. Maggiordomo, H. Moreton, and M. Tarini, “Micro-mesh construction,” ACM Trans. Graph., vol. 42, no. 4, Jul. 2023, ISSN: 0730-0301. DOI:
10.1145/3592440. [Online]. Available: https://doi.org/10.1145/3592440

• VK_NV_displacement_micromap
• NV_attribute_micromap
• NV_displacement_micromap

• NV_micromaps
• NV_micromap_tooling
• NV_opacity_micromap

52/57G. Waldemarson

Displacement Micromaps / Other Micromaps

A. Maggiordomo, H. Moreton, and M. Tarini, “Micro-mesh construction,” ACM Trans. Graph., vol. 42, no. 4, Jul. 2023, ISSN: 0730-0301. DOI:
10.1145/3592440. [Online]. Available: https://doi.org/10.1145/3592440

• VK_NV_displacement_micromap
• NV_attribute_micromap
• NV_displacement_micromap

• NV_micromaps
• NV_micromap_tooling
• NV_opacity_micromap

52/57

20
24

-0
8-
16 Micromaps

Displacement Micromaps / Other
Micromaps

Obviously, in this talk I only talked about Opacity Micromaps. However, Nvidia have defined at
least one other type known as a Displacement Micromap which is already available in Vulkan®

and DirectX® as a provisional extension. On top of that, it seems like they are also working more
types of micromaps, as they have defined glTF extensions for micromaps with more general
attributes on each sub-triangle.

This is not something I’ve had time to explore in detail, but modifying my plugin to output data
in the same format seems like a good idea for the future.

Additionally, displacement micromaps might be something to keep an eye on in the future. As
this could be something that may be nice to somehow fit into the sculpting baking process. But,
this is just me speculating; I don’t know enough about this extension or the baking process just
yet to have a valid opinion.

https://doi.org/10.1145/3592440
https://doi.org/10.1145/3592440
https://doi.org/10.1145/3592440
https://doi.org/10.1145/3592440


Importer Plugins

class glTF2ImportUserExtension:

def __init__(self):
from io_scene_gltf2.io.com.gltf2_io_extensions import Extension
self.properties = bpy.context.scene.OmmImporterExtensionProperties
self.extensions = [Extension(name="NONE_opacity_micromap",

extension={},
required=False)]

def gather_import_mesh_after_hook(self, gltf2_mesh, blender_mesh, gltf):
if self.properties.enabled:

create_micromap_attributes(gltf2_mesh, blender_mesh)

53/57G. Waldemarson

Importer Plugins

class glTF2ImportUserExtension:

def __init__(self):
from io_scene_gltf2.io.com.gltf2_io_extensions import Extension
self.properties = bpy.context.scene.OmmImporterExtensionProperties
self.extensions = [Extension(name="NONE_opacity_micromap",

extension={},
required=False)]

def gather_import_mesh_after_hook(self, gltf2_mesh, blender_mesh, gltf):
if self.properties.enabled:

create_micromap_attributes(gltf2_mesh, blender_mesh)

53/57

20
24

-0
8-
16 Micromaps

Importer Plugins

Lastly, I want to talk briefly about importers. Most of this talk has obviously focused on exporters,
which makes sense, it is what I’ve primarily worked with. But, it is also the most common use for
glTF; typically you have a detailedmodel with a lot of data (in Blender or some other framework)
that you effectively are filtering as you export it.

There are of course exceptions, and the most compelling use case is probably compression. Say
that we have developed a new compression algorithm, then we might use an importer addon
to test the decoding process.

And really, the structure of these addons are very similar to the exporter, the main thing that
can differ is that we sometimes have before and after hook: Since we cannot really work on
compressed data without actually decoding it!

Obviously, I’m not skilled enough to develop something like that for this talk, so we’ll settle for
something much easier:

This simple importer that looks for the presence of micromaps in the input gltf-mesh, and if so,
adds the appropriate attributes such that they will be generated during the next export.



Importer Plugins

mode, level, quality = find_attributes(gltf_mesh)
if level:

bl_mesh["micromapLevel"] = level
if mode:

bl_mesh["micromapMode"] = mode
if quality:

bl_mesh["micromapQuality"] = quality

54/57G. Waldemarson

Importer Plugins

mode, level, quality = find_attributes(gltf_mesh)
if level:

bl_mesh["micromapLevel"] = level
if mode:

bl_mesh["micromapMode"] = mode
if quality:

bl_mesh["micromapQuality"] = quality

54/57

20
24

-0
8-
16 Micromaps

Importer Plugins

And of course, setting attributes such as these is very easy:

• We simply need to find some attributes such as the mode, level and quality in this case
which I do by scanning the mesh for the extension key, (but omitted here for brevity).

• Then we simply set this attributes on the blender mesh.

• A tool like that could be useful if you’re importing old models or are compositing several
models together.



Conclusion and Summary

• What is glTF?
• The glTF Addon
• Creating Plugins

– Watermarking
– Micromaps

• Tips and Tricks
– Profiling
– Multiprocessing

55/57G. Waldemarson

Conclusion and Summary

• What is glTF?
• The glTF Addon
• Creating Plugins

– Watermarking
– Micromaps

• Tips and Tricks
– Profiling
– Multiprocessing

55/57

20
24

-0
8-
16 Micromaps

Conclusion and Summary

And just to quickly summarize things: In this talk we’ve talked about…

• glTF: what it is and how it is structured,

• the glTF addon that Blender uses to import and export glTF files.

• “Plugins” for this addon that allows us to customize the export and import.

– Along with a few examples such as the watermarker, and
– micromap plugins.

• And finally, I also provided a small collection of tips and tricks for handling
Multiprocessing or profiling as well as how some hints at effective use of in Blender.



Thanks for Listening
Questions

• Thanks for listening!
• Questions and Answers ?

56/57G. Waldemarson

Thanks for Listening
Questions

• Thanks for listening!
• Questions and Answers ?

56/57

20
24

-0
8-
16 Micromaps

Thanks for Listening

And with all that, I think it’s about time to open up for questions, should you have any!



The End

The End

20
24

-0
8-
16 Micromaps

(TBD: Why the encoded GLTF primitive and not Blenders version? To my knowledge Blenders
mesh primitive is much more general, and does not necessarily map to directly to those in GLTF,
and while on the face of it micromaps seems independent of the vertex ordering, they do in fact
depend on it: A micromap from vertex 0-1-2 is not the same as those of 1-2-0.)


	glTF
	Watermarking
	Customization Methods / Hooks
	Micromaps

